
Software
Testing

Tutorial Week 6

What is Software
Testing?
Definition: Software testing is the
process of evaluating and verifying that a
software product meets the required
standards and functions as expected.

Objectives:
• Identify and fix bugs.
• Ensure software reliability and

performance.
• Validate user requirements.

Types of Testing

Manual Testing Automation Testing

Other Types of Testing

Functional Testing
(Unit, Integration,
System, UAT)

Non-Functional
Testing (Performance,
Security, Usability)

Black Box Testing and White Box Testing

Why is Software Testing
Important?

Prevents critical failures. Improves user experience. Saves time and resources.

Build customer
confidence.

Fun Fact: The first
software bug was a real
bug—a moth found in a
computer in 1947!

Why Do Bugs Happen?

Miscommunication
or unclear
requirements.

Programming
errors.

Lack of proper
testing.

Bug Life Cycle
Identification

Assignment

Fixing

Testing

Closure

Software Testing Life Cycle
(STLC)

Software Testing Life Cycle
(STLC)
• Requirement Analysis :

• Understand & analyze testing requirements.
• Identify testable aspects of the application.

• Test Planning:
• Define scope, test strategy, and schedule.
• Identify required tools and resources.

• Test Case Development:
• Design test cases, test scripts, and test data.
• Peer review and approval.

• Environment Setup:
• Prepare test environment (hardware, software, network).
• Ensure configuration aligns with requirements.

• Test Execution:
• Execute test cases and log defects.
• Compare actual vs expected results.

• Test Closure:
• Analyze test results, prepare reports.
• Document lessons learned for future improvements.

Introduction to Selenium
What is Selenium?
Selenium is a popular open-source framework for automating web application
testing.
• Used for automating browser actions.
• Provides APIs for multiple programming languages.

Features:
• Supports multiple programming languages (Java, Python, etc.).
• Compatible with various browsers (Chrome, Firefox, etc.).
• Allows cross-browser testing.

Components of Selenium
Selenium WebDriver: A tool for automating browsers by directly interacting
with them.

•Supports multiple programming languages (Java, Python, C#, etc.).
•Suitable for functional and regression testing.
•Works with different browsers like Chrome, Firefox, Edge, and Safari.

Selenium IDE: A record-and-playback tool for creating automation scripts.
•Best for beginners and quick test case creation.
•Available as a browser extension for Chrome and Firefox.
•Generates scripts that can be exported to WebDriver-compatible code.

Selenium Grid: Enables parallel test execution on multiple machines and
browsers.

•Useful for distributed testing across different environments.
•Helps in running tests faster by leveraging multiple nodes.
•Works with Selenium WebDriver to execute tests remotely.

Advantages

FASTER TESTING
PROCESS.

REDUCES HUMAN
ERRORS.

REUSABLE TEST
SCRIPTS.

CSS Selectors
Locator Type Description Syntax

ID Locates an element using its unique ID attribute. This is one of the fastest
and most reliable locator types. driver.findElement(By.id(“elementID”));

Name Finds elements by their name attribute. This can be useful when multiple
elements share the same name.

driver.findElement(By.name(“elementName”));

Class Name Targets elements based on their class attribute. This is useful for selecting
multiple elements that share a class.

driver.findElement(By.className(“className”));

Tag Name Locates elements by their tag name (e.g., input, button, div). This can be
used to find all elements of a specific type.

driver.findElement(By.tagName(“tagName”));

Link Text Specifically used to locate anchor (<a>) elements by their visible text. This
is helpful for finding links.

driver.findElement(By.linkText(“Visible Text”));

Partial Link Text Similar to Link Text, but allows for partial matching of the anchor text,
making it useful for long or dynamic link text.

driver.findElement(By.partialLinkText(“Partial Text”));

XPath A powerful and flexible locator that uses XML path language to navigate
through elements and attributes in the DOM.

driver.findElement(By.xpath(“//tag[@attribute=’value’]”));

CSS Selector Utilizes CSS selectors to find elements. This is often faster than XPath and
can be very expressive for complex selections.

driver.findElement(By.cssSelector(“cssSelector”));

Steps To Get Started As a
QA/Tester

LEARN THE BASICS
OF SOFTWARE

TESTING.

FAMILIARIZE
YOURSELF WITH

SELENIUM TOOLS.

PRACTICE WRITING
AUTOMATED TEST

SCRIPTS.

EXPLORE ADVANCED
FEATURES LIKE
SELENIUM GRID.

Activities

Project
Simulation

16

Create a Test Case and a Bug Report for the following
Scenario

Students will create a Test Case and a Bug Report for
the following case:

https://dribbble.com/session/new
Dribbble is a website where designers, illustrators, and other creative
professionals showcase their work. It's a platform for sharing and
discovering design-related content, including graphics, animations, and user
interface designs. Users can upload their portfolios, browse other designers'
work, and connect with fellow creatives. It's popular in the design
community for inspiration, feedback, and networking.

1. Please create a test case for the following Functionalities.
• Sign up
• Login to the system
• Search box
Sample: <LINK TO THE SAMPLE TEST CASE AND BUG REPORT>

https://docs.google.com/spreadsheets/d/1SylQJoHy6xVGLKdher_vqs354ITEqxO4/edit?usp=sharing&ouid=104947495398239358579&rtpof=true&sd=true

Automation Testing: Install a Selenium
library

Setting up the Selenium library for Python.

pip install selenium
pip install selenium-x.x.x.-py3-none-any.whl

Write Your first Selenium Script
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
import time

Set up the WebDriver (Make sure you have the correct driver installed)
driver = webdriver.Chrome()
driver.get("https://www.google.com")

Find the search box and input the query
search_box = driver.find_element(By.NAME, "q")
search_box.send_keys("Selenium Tutorial")
search_box.send_keys(Keys.RETURN)

Wait for results to load
time.sleep(2)

Close the browser
#driver.quit()

Selenium Task
Use the following credentials to test the following test case using Selenium.
URL: cms.periwin.com
Username: colab@hck.com
Password: Hck321#@!

Algorithm:
Initialize WebDriver: Open a web browser using Selenium.
Navigate to the Login Page: Load the URL of the login page.
Locate Username & Password Fields: Identify input fields using locators
(ID, Name, XPath, etc.).
Enter Credentials & Submit:

1. Input username and password.
2. Click the login button.

Verify Login Success or Failure
3. Check if the dashboard/home page is loaded (success).
4. If login fails, capture the error message.

Close the Browser
5. End the test session.

Code Link for Selenium Code:

https://docs.google.com/document/d/14TmM0hYJQP7I3d74fMWeVUWFDEpPtmk29WWohwBaVms/edit?tab=t.0

Thank You

